P425/2 Applied Mathematics Paper 2 July - August, 2017 3 hours

UGANDA MUSLIM TEACHERS' ASSOCIATION UMTA JOINT MOCK EXAMINATIONS 2017 UGANDA ADVANCED CERTIFICATE OF EDUCATION Applied Mathematics

Paper 2 3 hours

INSTRUCTIONS:

- Answer all the eight questions in Section A and any five from Section B.
- Any additional question(s) will **not** be marked.
- All necessary working must be shown clearly.
- Mathematical tables with a list of formulae and squared papers are provided.
- In numerical work, take g to be 9.8 ms⁻².

Include the allocation table on your answer sheet

Question	Marks
Section A	
9	v
10	
11	
12	
13	
14	
15	
16	
Total	

SECTION: A (40 MARKS)

- 1. 40 percent of the students in certain school own personal computers. If 24 students are selected at random, find the probability that between 8 and 15 students own personal computers. (5 marks)
- 2. Forces of (ai + bj)N and (6i 4j)N act at the points having position vectors (-2i 2j) m and (3i j) m respectively. If the forces reduce to a couple, find;
- (a) a and b
- (b) the moment of the couple

(5 marks)

3. Use the trapezium rule with 5 strips to find an approximate value for

$$\int_{1}^{2} xe^{-2x} dx$$
 Correct to 3 significant figures. (5 marks)

- 4. A random sample of 100 Adults is taken from a population. The sample is found to have a mean weight of 76.0 and variance of 144.00. Find the 97% confidence limits for the mean of the population (5 marks)
- 5. Two particles are travelling along a straight line AB of length 20m. At the same instant one particle starts from rest at A and travels towards B with a constant acceleration of 2ms⁻² and the other particle starts from rest at B and travels towards A with a constant acceleration of 5m⁻². Find how far from A the particles collide. (5 marks)
- 6. An examination question has two parts A and B. The probability of a student getting part A correct is $\frac{2}{3}$. If she gets part A correct, the probability that she gets part B correct is $\frac{3}{4}$, otherwise its $\frac{1}{6}$. There are three marks for a correct solution of part A, two marks for part B and a bonus mark if both parts are correct. Calculate the expected student's total mark.

(5 marks)

- 7. A light inextensible string of length 40 cm has its upper end fixed at a point A, and carries a mass of 2 kg at its lower end. A horizontal force applied to the mass keeps it in equilibrium, 20 cm from the vertical through A. Find the magnitude of this horizontal force and the tension in the string.

 (5 marks)
- 8. The table below shows the values of a function f(x)

X	1.0	1.1	1.2
f(x)	0.000	0.095	0.182

Use linear interpolation/extrapolation to find;

- (i) f(1.16)
- (ii) f(x) = 0.24

(5 marks)

SECTION B (60 MARKS)

9. (a) Show that there is real root of the equation $e^x - 2x - 5 = 0$ between	n -3 and -2. (3 marks)
(b) Derive the Newton-Raphson formula, to find the root of the equation	n in (a) above,
	(3 marks)
Hence construct a flow chart that	
(i) reads the first approximation X_0 ,	
(ii) computes the root to 3 decimal places,	
(iii) prints the root.	(4 marks)
(c) Perform a dry run for your flow chart using $x_0 = -2.5$	(2 marks)
10. The height of pupils in a school is normally distributed with mean deviation of 7 cm. If a pupil is selected at random. Find the probability the	
(i) above 144 cm	(2 marks)
(ii) less than 123 cm	(2 marks)
(b) determine the lower and upper quartile heights	(4 marks)
(c) If 4000 pupils are selected at random, determine the number whose 126.5 cm and 137 cm.	height will lie between (4 marks)
11. A car of mass 750 kg has a maximum power of 30 kW and moves again to motion of 800 N. Find;	nst a constant resistance
(a) the maximum speed of the car; (i) on the level road.	(3 marks)
(ii) Up an incline of slope 1 in 10	(4 marks)
(b) the acceleration down the same incline if it moves at 40 ms ⁻¹	(5 marks)
•	

12 The table below shows the time taken to load vehicles in a day

m: (· · · · · · · · · · · · · · · · · ·	N
Time (minutes)	Number of vehicles
40 - 45	4
45 - 50	13
50 - 55	17
	-
55 - 60	44
60 - 70	59
70 - 80	7

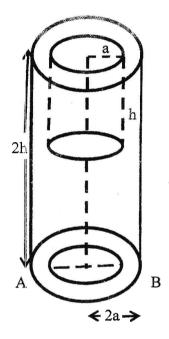
(a) Draw an histogram and use it to estimate the modal time.

(5 marks)

- (b) Find the: (i) Mean time, (ii) Median time (iii) standard deviation of the time (7 marks)
- 13. A particle is projected from a point which is 2 m above the ground level with a velocity of 40 ms⁻¹ at an angle of 45⁰ to the horizontal. Find its horizontal distance from the point of projection where it hits the ground. (6 marks)
- (b) A particle is projected inside a tunnel which is 2 m high. If the initial speed is u show that the maximum range inside the tunnel is $\sqrt[4]{\left(\frac{u^2-4g}{g}\right)}$ (6 marks)
- 14. The numbers y and z are approximated with possible errors of Δy and Δz respectively.
 - (a) Show that the maximum relative error in the quotient $\frac{y}{z}$ is given by $\left|\frac{\Delta y}{y}\right| + \left|\frac{\Delta z}{z}\right|$ (5 marks)
- (b) Given that x = 20.136, y = 15.3 and z = 9.5342 are rounded to the given number of decimal places, find the limits within which the exact value of $\frac{y-x}{y+z}$ is expected to lie (7 marks)
- 15. A continuous random variable X has a probability density function given by:

$$f(x) = \begin{cases} 0.5k \ x^2 & 0 \le x < 2 \\ k(4-x) & 2 < x \le 4 \\ 0 & otherwise \end{cases}$$

(a) Sketch the graph of f(x)


(3 marks)

(b) Determine the value of k

(3 marks)

(c) Find the (i) Mean (ii) Median

- (6 marks)
- 16. (a) The rectangle ABCD has AB = 4 cm and AD = 2 cm. Particles of mass 3 kg, 5 kg, 1 kg and 7 kg are placed at the points A, B, C and D respectively. Find the distance of the centre of gravity of the system from each of lines AB and AD. (6 marks)
- (b) The diagram below shows a uniform cylinder of radius 2a and height 2h with a cylindrical hole of radius a and height h drilled centrally at one plane end.

Show that the centre of gravity of the remaining solid is $\frac{13}{14}h$ from the base AB. (61)

(6 marks)

END

UMTA MARICING GVIDE 2017 MOCICS P425/2 MATHEMATICS. VACE.

Q: 1 N = 24, P = 0.4, Q = 0.6 P(8 < x < 15) = ? M = nP M = 24x0.4 = 9.6 $0^2 = nPq$ = 9.6x0.6 $0^2 = 5.76$ 0 = 5.76

P(8 < x < 15) = P(9 < x < 14.5) = P(8.5 < x < 14.5). = P(8.5 < x < 14.5). = P(8.5 < x < 14.5).

= P(-0.458 4 2 4 2.042).

= 0.1765 + 0.4794= 0.6559. 87

MIM

3-7

47

$$\begin{pmatrix} 9 \\ b \end{pmatrix} + \begin{pmatrix} 6 \\ -4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

 M_i

$$a+b=0$$

$$and b-4 = 0$$

$$02 \quad G = \begin{vmatrix} -2 & -6 \\ -2 & 4 \end{vmatrix} + \begin{vmatrix} 3 & 6 \\ -1 & -4 \end{vmatrix}$$

i. a=-6 and b=4.

$$h = \frac{2-1}{5} = 0.2$$

	1	
α	40, 45	4, 4, 4, 4
1-0	0.13534	
1- 2	d-1088 (s)	0.10886
1.4		0.08513
1.6	in the second se	0,06522
1-8	COLLEGE COLLEG	818400
2.0	0.03663	
	0.17197	0.30839
1		

By 3-7

$$\int_{1}^{2} 2e^{-2x} dx = \frac{1}{2}$$

$$= \frac{1}{2} + 02 \left(0.17197 + 2x0.30839\right)$$

$$= 0.1 \left(0.78875\right)$$

$$= 0.078875$$

= 0.0789 35.71.

my

M

N = 100, $\bar{X} = 76.0$, S = 144.0004 Final 97% la Confrdence timb P Q Z 0.485 0.015 2-17 2-17 = 82-76.0

$$\Rightarrow 2.17 = \frac{2}{2.7} + 6.0$$

$$\sqrt{5} = \frac{x_1 - 76.0}{1.2}$$

A x 20-x B

5 = Ub + 2942

 $\Rightarrow \alpha = \frac{1}{2} (2) \xi^2 \dots (i),$

B: 20-x = {(5)} = (4)

20-2 = 500

20-2 = \{ >2

20=克义

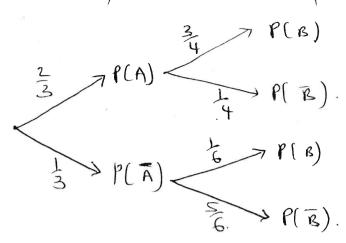
x = 40 m

~ x= 5.7143 m.

B

By

my


By

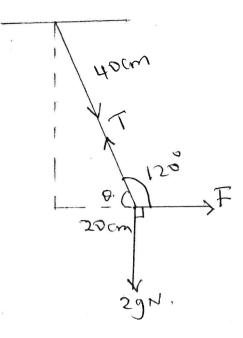
A

(05)

0,6.

A 1s for correct part of A B 11 for concert pert of B

poly council =


$$P(Ans) = \frac{2}{3} \times \frac{3}{4} = \frac{1}{2}$$

 $P(Ans) = \frac{2}{3} \times \frac{1}{4} = \frac{1}{6} \text{ A unset}$
 $P(Ans) = \frac{1}{3} \times \frac{1}{6} = \frac{1}{18} \text{ is a unset}$
 $P(Ans) = \frac{1}{3} \times \frac{5}{6} = \frac{5}{18} \text{ is a unset}$
 $P(Ans) = \frac{1}{3} \times \frac{5}{6} = \frac{5}{18} \text{ is a unset}$

let x be mark schred,

×	P(X=x)	XP(x=c).
0	5/8	0
2	18	78
3	1	* 36
6	1 2	3

E(x) = 3.61

Expected both mark = 3,61

$$\cos \varphi = \frac{29}{49} = 0.5$$

$$\theta = 60^{\circ}$$

$$\frac{T}{\sin 90} = \frac{F}{\sin 150} = \frac{29}{\sin 100}$$

B

MI

M

MI

97

d,

U

χ	[-]	1.16	1-2
f(x)	0.095	9	0.187

y-0.095 = 0.87x0.06 = 0.0522

X	1-1	1-2	24	
(fm)	5/000	01/85	0.24	L

$$\frac{3^{1}-1.5}{6.54-0.185} = \frac{0.185-0.000}{1.5-1.1}$$

$$x_1 = 1.267$$
.

By (Mobile)

My

A

My

A

$$f(x) = e^{-2x-5} = 0$$

$$f(-3) = e^{2} + 6 - 5 = 1.0498$$

$$f(-2) = e^{2} + 4 - 5 = -0.8647$$
Since $f(-3) \ge 0$ and $f(-2) < 0$
Implies there is a note

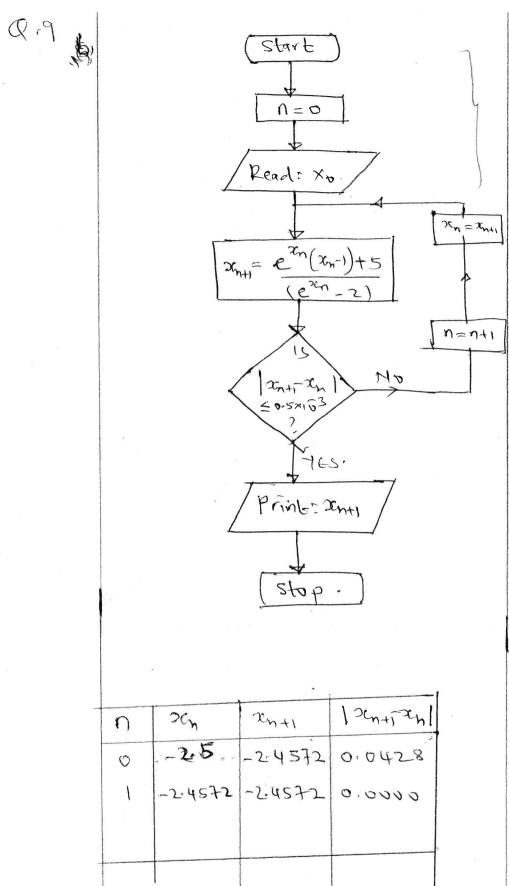
between -3 and -2 .

$$f(3) f(-1) \ge 0$$

Implies there is a not between

$$f(3) f(-1) \ge 0$$

$$f(3) = e^{2} - 2x - 5$$


$$f(3)$$

 $=\frac{e^{2n}(2n-1)+5}{(e^{2n}-2)}$

as

b,

37

		`	
n	2Ch	2n+1	1 sentith
O	-25	-24572	0.0428
1	-2.4572	-2.4572	0.0000
		Anneal Control of the	
The state of the s		Management and the state of the	
Name of the Park o	•		
į.			

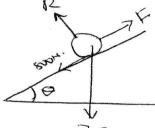
1, nut = -2,457

By

0.10
$$M = 130 \text{ cm}, \sigma = 7 \text{ cm}.$$
 $P(x > 144) =$
 $P(z > 144 - 130)$
 $P(z > 2) = 0.0218.$
 $P(x > 144) = 0.0228.$
 $P(x < 123) =$
 $P(z < 123 - 130)$
 $P(z < -1)$
 $P(z < -1)$

1

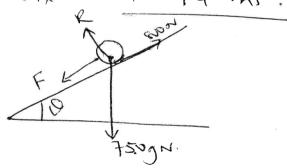
 $V_{r} = \frac{30 - 130}{130}$ $V_{r} = \frac{130 - 130}{130}$ $V_{r} = \frac{130 - 0.674}{1} = \frac{130 - 130}{1}$ $V_{r} = \frac{130 - 0.674}{1} = \frac{125.282}{1}$ $V_{r} = \frac{125.282}{1}$ $V_{r} = \frac{125.282}{1}$


A fresh

B Ellher

0, 10 P(116.5: 2 x < 137) = P(-0.5 < z < 1) = 0.1915 + 0.3413 = 0.5328 x 4000. = 2131 yupib. 500N. → F 7509N

Itemizer tally


Vmax = 37.5 ms!

51m0=1

Resolving 11 12 pluze

Vanax = 19,544 ms1.

F + 750gsina - 800 = 750a.

By

My

4

By

By

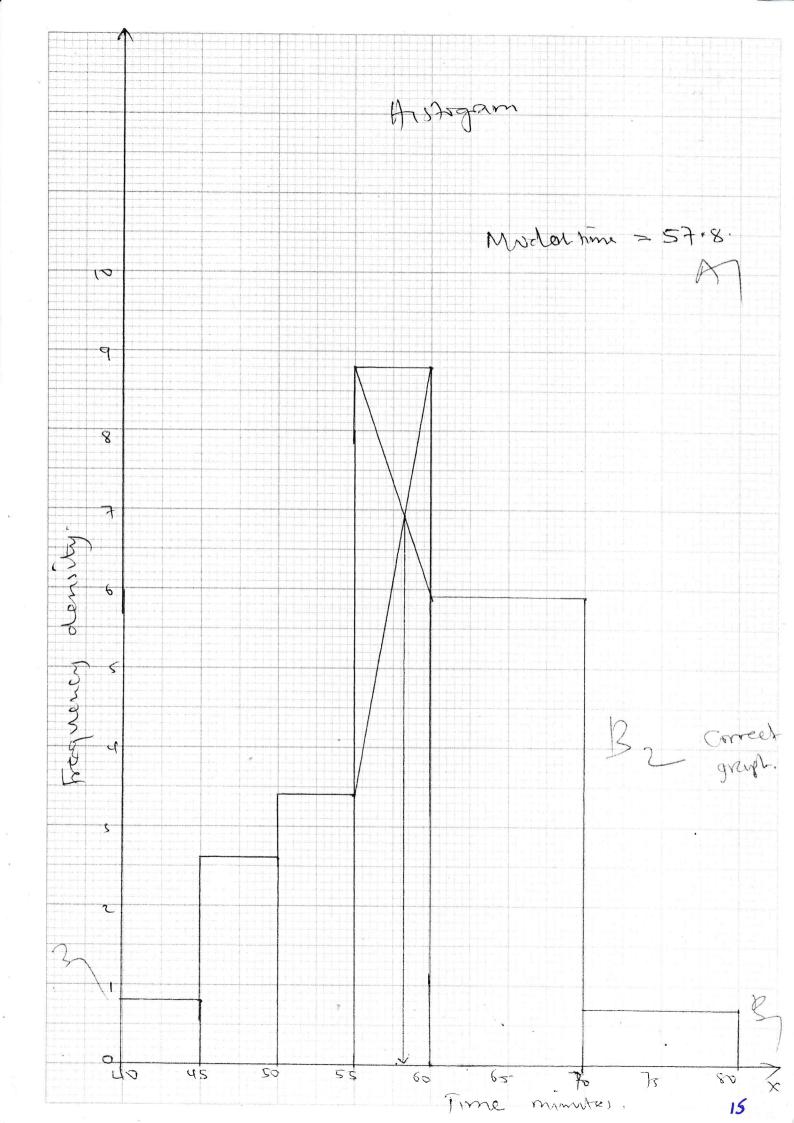
M

47

8

M

M


4

, u

b,

(12)

0-12	x x x x x x x x x x	
	$3 - \frac{1}{2} = 8570$ $2 = \frac{1}{2} = \frac{28660075}{12} = 5175375$	8 3
	= 59.514 mm/cs (and)	(M)
	medon home = $55 + (72-34) \times 5$. $= 59.318$	A-1
in	2.0 = \ 34061000 - (8570) 5]	
	£ S.D = \ \frac{\si7.53}{144} - \left(\frac{8570}{144}\right)^{\textsquare}	M
	$50 = \sqrt{3594.01042-3541.90297}$	
	5.0 = 7.219 mm/tri.	A

W13 45 2m æ x = 4000545°6 -2 = 4051M45°t-19t2 49+2-4051nust-2=0. F= 40511712 7 (EnD21423) - 4x4-3x(-5) 2 x 10 - 9 F = 5.8225 m -0.069 865. 2 = 4000345° x 5.92 = 165.2424 m 5, 12m $2 = \frac{\sqrt{sinb}}{29}, sinb = \frac{49}{42}$ R = 242 Cosasina R = 201, 11-sino). sino = 44 Vu2-49 1, Vg. R= 41(42 49)19. 16 014

$$Emr = \left(\frac{y+\Delta y}{z+\Delta z}\right) - \frac{y}{z}$$

$$= \frac{z(y+\Delta y) - y(z+\Delta z)}{z(z+\Delta z)}$$

$$= \frac{zy+z\Delta y - yz-y\Delta z}{z(z+\Delta z)}$$

$$= \frac{z\Delta y - y\Delta z}{z^2(1+\Delta z)}$$

$$= \frac{z\Delta y - y\Delta z}{z^2(1+\Delta z)}$$

$$= \frac{z\Delta y - y\Delta z}{z^2}$$

$$= \frac{(z\Delta y - y\Delta z)}{z^2} \cdot \frac{y}{z}$$

$$= \frac{(z\Delta y - y\Delta z)}{z^2} \cdot \frac{y}{z}$$

$$= \frac{\Delta y}{y} - \frac{\Delta z}{z}$$

$$= \frac{\Delta y}{y} + \frac{\Delta z}{z}$$

$$= \frac{\Delta y}{y} + \frac{\Delta z}{z}$$

M

By

my

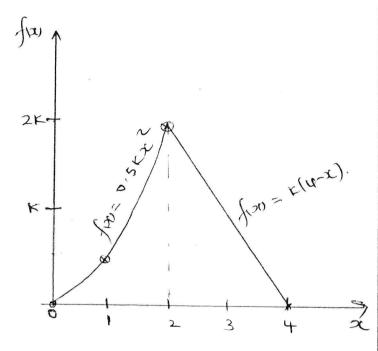
3

0.14 0.220-131, y=15.3, Z=9.5342, U, U

haver $\frac{15.25 - 20.1365}{15.25 + 9.53415}$

i. burer limit = -0:19716 Upper Timet = -0:19231 Byny

军


m 3

3 5 5

MZ

) oc	0	l'	2	4
fro	0	0.5K	2K	0

Q

-b

$$\int_{0}^{2} \frac{1}{2} x^{3} dx + \int_{0}^{4} x (4-x) dx = 1$$

$$\frac{12}{2} \left[\frac{x^{3}}{3} \right]_{0}^{2} + \kappa \left[\frac{4x - 2}{2} \right]_{0}^{4} = 1$$

$$\frac{12}{2} \left[\frac{8}{3} \right] + K \left(8 - 6 \right) = 1$$

$$\frac{4\pi}{3} + 2\pi = 1$$

$$10\pi = 3$$

$$K = 0.3 = \frac{3}{10}$$

Mean Ex)

$$= \frac{1}{2} \left[\frac{x^{4}}{3} dx + \frac{1}{2} \left[\frac{4x-x^{2}}{4x-x^{2}} dx \right] \right]$$

$$= \frac{1}{2} \left[\frac{x^{4}}{4} \right] + \left[\frac{2x^{2}-x^{2}}{3} \right] \frac{4}{2}$$

B181

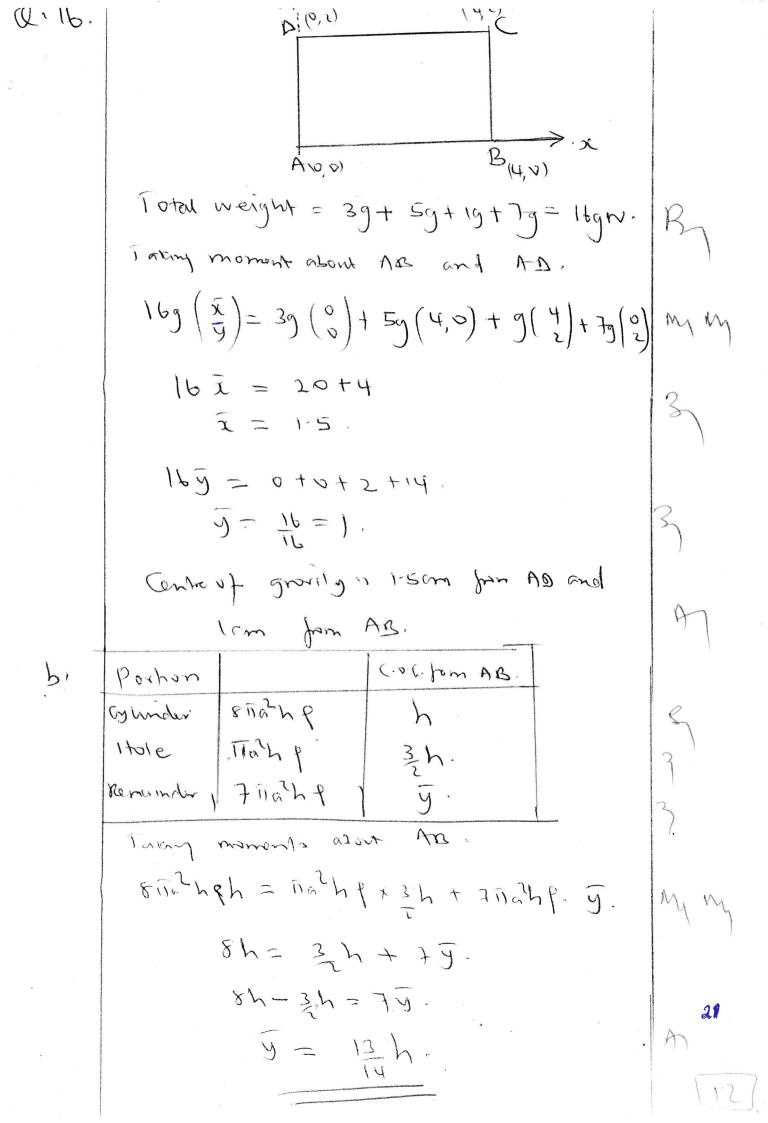
M,

8

4

M

$$E(x) = 0.6 + 0.3 (24 - 54)$$


$$E(x) = 2.2$$
Median.
$$\int_{2}^{4} k(4-x)dx = Area$$

$$= \frac{1}{2} x^{2} x^{0.6} = 0.6.$$
Hence median this between 2 and 4.
$$\int_{2}^{4} k(4-x)dx = 0.3$$

$$0.3 \left[\frac{4x-x^{2}}{2} \right]_{2}^{4} = 0.5$$

$$0.3 \left(\frac{4x-x^{2}}{2} \right)_{2}^{4} = 0.5$$

$$0.3 \left(\frac{4x-x^{2}}{2} \right)_{$$

